2 resultados para Depósitos de C1q

em Aston University Research Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

IgG can be denatured in vitro by reactive oxygen species (ROS). Native IgG activates the complement cascade through C1q. Using a modified ELISA, C1q binding activity of rheumatoid IgG has been compared to IgG denatured by neutrophil-derived ROS. The C1q binding activity of rheumatoid synovial fluid IgG is greater than the corresponding serum IgG (P < 0.01). Denaturation of IgG by activated polymorphs or the Fenton reaction decreased its C1q binding activity (P < 0.01). In vitro exposure of IgG to OH. and ROO. increased its interaction with C1q (P < 0.01). Hypochlorous acid had no effect. ROS-induced alteration to IgG-C1q binding activity may promote the inflammatory response in rheumatoid arthritis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cells dying by apoptosis are normally cleared by phagocytes through mechanisms that can suppress inflammation and immunity. Molecules of the innate immune system, the pattern recognition receptors (PRRs), are able to interact not only with conserved structures on microbes (pathogen-associated molecular patterns, PAMPs) but also with ligands displayed by apoptotic cells. We reasoned that PRRs might therefore interact with structures on apoptotic cells-apoptotic cell-associated molecular patterns (ACAMPs)-that are analogous to PAMPs. Here we show that certain monoclonal antibodies raised against the prototypic PAMP, lipopolysaccharide (LPS), can crossreact with apoptotic cells. We demonstrate that one such antibody interacts with a constitutively expressed intracellular protein, laminin-binding protein, which translocates to the cell surface during apoptosis and can interact with cells expressing the prototypic PRR, mCD14 as well as with CD14-negative cells. Anti-LPS cross reactive epitopes on apoptotic cells colocalised with annexin V-and C1q-binding sites on vesicular regions of apoptotic cell surfaces and were released associated with apoptotic cell-derived microvesicles (MVs). These results confirm that apoptotic cells and microbes can interact with the immune system through common elements and suggest that anti-PAMP antibodies could be used strategically to characterise novel ACAMPs associated not only with apoptotic cells but also with derived MVs. © 2013 Macmillan Publishers Limited All rights reserved.